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The velocity distribution is obtained for motion of a liquid in a tank under the ac- 
tion of a jet of gas injected through a free surface. 

To calculate the melting of steel in a converter one must know the laws of heat and mass 
transfer in a pig-iron melt, acted on by a jet of oxygen. From the published papers one gets 
the impressions that it is impossible to describe the motion of the melt mathematically, and 
one must therefore use an experimental method of solution. Then a considerable amount of ma- 
terial must be expended to accomplish the technical proposals. However, the state of de- 
velopment of methods of solving the equations of liquid mechanics are such that a computer 
can be used to attempt a mathematical study of the converter hydrodynamics in order to seek 
scientifically based guidelines for improving the process. 

Figure 1 shows a schematic of the converter. A jet of oxygen 3 is injected through the 
feed-line 2 into the melt 1 and forms a crater 4. Propagating along the surface of the cra- 
ter, the jet interacts with the melt, creating forced motion in the tank. 

Since the motion is axisymmetric, it is appropriate to seek a solution of the problem of 
the velocity distribution in the melt in terms of a cylindrical coordinate system r, ~, and 
z. With continuous injection, the deviation of the melt velocity from a steady-state value 
can only occur because of variation of the melt density and viscosity with time. Taking the 
assumption that the melt motion is independent of time and this will be shown below, the ini- 
tial dynamic equations for 3/8t = 3/~= 0 can be written in the form 

Ov~ Ov~ ==F~ 1 OP ( O=v~ + 1 Ov, v r O=Vr ) 

Or, OV, - -  F~ 1 OP -b v~ ( O~v~ 1 Ov~ O~v, ] 
Vr ~ + V ,  OZ 9 OZ Or ~ + r Or + ~z2 i ,  (1) 

O(rVr) -- O(rvz) -- O. 
Or OZ 

In deriving the system of equations (i) we assumed that the turbulent analog of the vis- 
cosity v T is independent of coordinates r and z, and we could then take it outside the dif- 
ferentiation sign. For large Reynolds numbers this assumption is based on the Kolmogorov 
turbulence model [i]. To use a representation of ~T, based on the well-known semiempirical 
theories, would lead to a complication in Eq. (i), leaving us with the same hypothesis. After 
reducing the equations to dimensionless form, we introduce v T into the turbulent analog of 
the Reynolds number ReT, based on a semiempirical formula relating it to the tank dimensions~ 
the injection conditions, and the physical properties of the liquid. 

To solve the system of equations we must know the velocity distribution along the tank 
axis, on the bottom, the walls, and the free surface of the liquid. From the flow symmetry 
condition, along the tank axis we have 

vr = O, Ov~ - -0 .  (2) 
Or 
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Fig. i. Schematic of the converter. 

On the bottom and the walls, using the conditions of impermeability and zero slip of the liq- 
uid, we have 

v r=O, V z=O.  (3) 

To define the boundary condition on the free surface we use an approximate velocity dis- 
tribution obtained from physical reasoning and including a conceptual interaction of the gas 
jet with the liquid. 

To estimate the order of magnitude of the velocity and choose a characteristic value 
2 V = /V~ + Vz, we examine the gas motion along the liquid surface. From the condition that 

the tangential stresses are equal on the crater surface 

(~ Ov 

, O n  h ' 

assuming a linear velocity distribution in the boundary layers, and taking into account that 
Vz<<Vg, ~g<< ~l, we obtain the following relation for the velocity of the interface: 

�9 8) 

(-7 V-- iV T)g 
where  ~, 8 a r e  t h e  dynamic  v i s c o s i t y  and t h e  b o u n d a ry  l a y e r  t h i c k n e s s ,  r e s p e c t i v e l y .  

In  [ 2 ] ,  in  an e x p e r i m e n t a l  s t u d y  o f  t h e  m o t i o n  o f  a s w i r l i n g  j e t  o f  a i r  above  a w a t e r  
surface, the authors obtained V~/V l = 55, which corresponds to the value calculated from the 
viscosity ratio. For interaction of oxygen, heated to 500~ with a pig-iron melt, Vg/V l 
50, and the maximum velocity of the crater surface is 3-4 m/sec. We define the crater di- 
ameter and depth from the known empirical relations [3]. Taking the above into account, the 
velocity distribution in the crater zone can be described by the linear relations 

r 
V z = - - V z  for O < r < k q ;  

k ~  

v , =  ~ - - r  V~ for k r c < r < ~ ;  (4) 
(1 - -  k)rc 

v r = V r  hr for. h c < z < h ,  
hc - -h  

where kr c is the crater radius corresponding to velocity V. 

We now convert the system of equations (i) to a form suitable for numerical solution. 
We introduce the stream function ~, the vorticity m, 

1 O~ 1 O~ Or, OO, 
v ~ -  , v~ = , ~ , ( 5 )  

r Oz r Or Oz Or 
and the dimensionless quantities 
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Fig. 2. Distribution of the stream func- 
tion in the meridian plane. 

7 r - z ~ - ~ a  V a  - , z = - - ,  ~ = - - ,  ~ -  , R e ~ = - - ,  ( 6 )  
a a Va 2 V v r 

where we drop the bars above the symbols for simplicity. We eliminate the pressure P and the 
mass force components from the system (!). To do this we differentiate the first equation 
with respect to z, the second to r, and subtract one from the other. After reducing this 
equation and Eq. (5) to dimensionless form, and taking account of Eq. (6), we obtain 

{0 I. 0(o!0 ] I0[ 0( ii 01 0(+)] 1 ~ ~ \ ~ or m 7 -  ~ -  ~ ~ ~ - ~  ~ ~ =o,  �9 ~ ~ r  ( 7 )  

O"--z OZ. ~ - ~ r  r 

As unknowns  i n  t h e  e q u a t i o n s  we i n t r o d u c e  t h e  s t r e a m  f u n c t i o n  ~ and t h e  v o r t i c i t y  ~ ,  
functions of the coordinates r and z. We define the turbulent analog of the Reynolds number 

Re T from the semiempirical relation 

L t - -g -  , 
where 

U . ~  
R e  - -  t 

and the liquid velocity, averaged over the boundary-layer thickness for a characteristic cra- 

ter section, is 

6 

1 f vdn. U =  6 
0 

In order to represent a change of viscosity and melt density, typical for the melting 
of steel in an oxygen converter [4], the value of Re T remains practically constant during 
the gas injection. The mixing can be intensified by increasing Re T until one reaches a sim- 
ilarity regime with a corresponding structure of turbulence, and by changing the velocity U, 
one can proceed until the crater surface becomes unstable, when the converter output in- 

creases sharply. 

The region of solutions of Eq. (7) is shown in Fig. 2. The crater profile is approxi- 
mated by a rectangle of sides h c x r c. In the solution we used the uniform mesh 

h 
z~ = i . A z ,  A z - -  , i = O ,  1 . . . . .  m; 

m 

1 
r j = j . A r ,  A r =  , ] = 0 ,  1 . . . . .  n. 

n 
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Fig. 3. Velocity distribution in the meridian plane: 

a) axial; b) radial. 

The boundary conditions for the vorticity were obtained in dimensionless form from Eqs. 
(2)-(4), taking account of Eq. (5): 

on the tank axis with r = 0, 0 < z < hc, i = 0, i, ..., il 

~i,o = 0; (9 )  

in the crater with 0 < r < re, z = hc, j = 0, i, ..., jl 

(dil--l, f 3 ~iI--~,] -- ~bil,] O)il,] L - - -  

2 r n , i  (Az) 2 

f o r  r = r c ,  h c < z < h ,  i = i l ,  . . . ,  m 

( A r ) l - 6  coi,i, + "- -c~162 
r c 2 r c (At) z 

3 {Ov ,  ] . ( 1 0 )  

2 \ Or / ~ , i '  

'-- 3 0"5 ~ 3r c ~ Oz ]~,:l ' (ii) 

on the free surface with r c < r < I, z = h(j = jl, ..., n) 

- -  - T V~ -- ; (12) 

2 rm,i (Az) ~ Az 

o n  t h e  s i d e  w a l l  w i t h  r = 1 ,  0 < z < h ( i  -- 0 ,  l ,  . . . ,  m) 

( l & A r ) ~ , , ~  ! ~ i . ~ - i  --3 ~ i , . - 1 - - ~ . n  . 
2 ( a r )  , , ( 1 3 )  

on  t h e  t a n k  b o t t o m  w i t h  0 < r < 1 ,  z = 0 ( j  = 0 ,  1 ,  . . . ,  n )  

coi,i 3 apl,]-- ~o.i (14) 
030, ]  ~ - - _  

2 ro,: (Az) ~ 

The stream function along the contour of the region examined is 

~ = 0 .  (15) 

This system of equations (7), of elliptic type with boundary conditions (9)-(15), was 
solved by a mesh method, using a Zeidel iteration scheme on a type M-222 computer. 

By way of example we calculated the velocity field in the tank of a 130-ton converter 

with dimensions a = 2 m, h/a = 0.8; for crater dimensions 2r c = 0.4 m, rc/h c = 0.38. The 
kinematic viscosity of steel was assumed to be ~ -- 0.8.10 -6 ma/sec for l600~ With a charac- 
teristic velocity of the crater surface of V = 4 m/see, U ~ 0.5 V and a boundary-layer thick- 
ness of 6 = 0.02 m, Re T = i. It can be seen from Fig. 2 that the injected jet forms a tor- 
oidal vortex in the melt, with motion toward the bottom of the tank near the walls, and to- 
ward the free surface in the axial zone. The maximum values of axial velocity are at the 
level of the vortex center, and the maximum radial velocity is on the free surface and below 
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the crater (Fig. 3). Near the walls and on the tank bottom the velocity components are small, 
with a strong attenuation from the free surface to the bottom. 

The results of the calculations show that the velocity distribution agrees with the ex- 
perimental data [3]. 

NOTATION 

a, tank radius; h, tank height, crater depth; F, mass force; v, V, velocities; P, pres- 
sure; ReT, turbulent analog of the Reynolds number; r, z, coordinates; 5, boundary-layer 
thickness; p, density; UT, turbulent analog of the viscosity; 4, stream function; m, vor- 
ticity. Indices: g, gas; Z, liquid; c, crater; (i, j), node of the rectangular mesh; il, 
node corresponding to hc; jl, node corresponding to r c. 
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INFLUENCE OF THE PROPERTIES OF HYDRATED SOLID PHASE SURFACES 

ON THE EFFECT OF A DENSITY CHANGE IN A DISPERSED MEDIUM 

P. P. Olodovskii UDC 541.18.051 

The role of exchange cations in the formation of the structure of a dispersed medi- 
um on hydrated surfaces of montmorillonite is shown. 

Results of experimental investigations associated with the proof of the existence of an 
effect of a density change in a dispersed medium in a solid--adsorbed water-- liquid system 
and an interpretation of these results on the basis of a mechanism of adsorption of the dis- 
persed medium molecules on active centers of clayey mineral surfaces are presented in [i]. 

Taking account of this effect permitted a more confident estimation of the density dis- 
tribution of the adsorbed water and giving a foundation to methods of computing the adsorp- 
tion characteristics of dispersed system s . But it is interesting to extend the investiga- 
tion and to establish the influence of the active center configuration in the solid phase on 
both the change in structure of the dispersed medium on the boundary with this phase and on 
the density of the adsorbed water. 

The natural form of montmorillonite (Crimean kill) was taken as the subject of the study, 
it being selected also because it was necessary to establish the role of the specific sur- 
face of different sections of the crystal lattice in the formation of the filtration proper- 
ties of a mineral modified by water-soluble polymers. 

The first step in the research was to determine the density of the dehydrated adsorbent 
do in a fluid possessing a zero effect of a change in its density, i.e., the density of the 
solid phase in such a fluid is independent of its mass. As for Na-montmorillonite, nitro- 
benzene is a fluid with zero effect for the natural form of bentonite. According to the 
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